Detecting the Boundaries of Urban Areas in India: A Dataset for Pixel-Based Image Classification in Google Earth Engine
نویسندگان
چکیده
Urbanization often occurs in an unplanned and uneven manner, resulting in profound changes in patterns of land cover and land use. Understanding these changes is fundamental for devising environmentally responsible approaches to economic development in the rapidly urbanizing countries of the emerging world. One indicator of urbanization is built-up land cover that can be detected and quantified at scale using satellite imagery and cloud-based computational platforms. This process requires reliable and comprehensive ground-truth data for supervised classification and for validation of classification products. We present a new dataset for India, consisting of 21,030 polygons from across the country that were manually classified as “built-up” or “not built-up,” which we use for supervised image classification and detection of urban areas. As a large and geographically diverse country that has been undergoing an urban transition, India represents an ideal context to develop and test approaches for the detection of features related to urbanization. We perform the analysis in Google Earth Engine (GEE) using three types of classifiers, based on imagery from Landsat 7 and Landsat 8 as inputs. The methodology produces high-quality maps of built-up areas across space and time. Although the dataset can facilitate supervised image classification in any platform, we highlight its potential use in GEE for temporal large-scale analysis of the urbanization process. Our methodology can easily be applied to other countries and regions.
منابع مشابه
VHR Semantic Labeling by Random Forest Classification and Fusion of Spectral and Spatial Features on Google Earth Engine
Semantic labeling is an active field in remote sensing applications. Although handling high detailed objects in Very High Resolution (VHR) optical image and VHR Digital Surface Model (DSM) is a challenging task, it can improve the accuracy of semantic labeling methods. In this paper, a semantic labeling method is proposed by fusion of optical and normalized DSM data. Spectral and spatial featur...
متن کاملComparison of Performance in Image Classification Algorithms of Satellite in Detection of Sarakhs Sandy zones
Extended abstract 1- Introduction Wind erosion as an “environmental threat” has caused serious problems in the world. Identifying and evaluating areas affected by wind erosion can be an important tool for managers and planners in the sustainable development of different areas. nowadays there are various methods in the world for zoning lands affected by wind erosion. One of the most important...
متن کاملPalarimetric Synthetic Aperture Radar Image Classification using Bag of Visual Words Algorithm
Land cover is defined as the physical material of the surface of the earth, including different vegetation covers, bare soil, water surface, various urban areas, etc. Land cover and its changes are very important and influential on the Earth and life of living organisms, especially human beings. Land cover change monitoring is important for protecting the ecosystem, forests, farmland, open spac...
متن کاملComparative analysis of remote sensing water indexes for wetland water body monitoring using Landsat images and the Google Earth Engine Platform0 (A Case study: Meighan Wetland, Iran)
Wetlands are dynamic and complex aquatic ecosystems that play an important role in the survival of many plant and animal species. This study modeled the spatio-temporal changes of the Arak Meighan wetland during 1985–2020 using the multi-temporal Landsat images. In doing so, the applicability of different satellite-derived indexes including NDVI, NDWI, MNDWI, AWEIsh , AWEInsh , and WRI was inve...
متن کاملInvestigation of land use changes in Gorganrood catchment using Google Earth Engine platform
The purpose of this study is to investigate landuse changes in Gorganrood basin in 2001, 2010 and 2019. Using Landsat and Product-Modes satellite images, used maps were prepared using the classification method of random forest algorithm in Google Earth Engine. Satellite imagery was classified into eight classes including forest, cropland, shrubland, grassland, wetland, urban, barren, and water....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 8 شماره
صفحات -
تاریخ انتشار 2016